A Golden Resource for Named Entity Recognition in Portuguese
نویسندگان
چکیده
This paper presents a collection of texts manually annotated with named entities in context, which was used for HAREM, the first evaluation contest for named entity recognizers for Portuguese. We discuss the options taken and the originality of our approach compared with previous evaluation initiatives in the area. We document the choice of categories, their quantitative weight in the overall collection and how we deal with vagueness and underspecification.
منابع مشابه
Second HAREM: Advancing the State of the Art of Named Entity Recognition in Portuguese
In this paper, we present Second HAREM, the second edition of an evaluation campaign for Portuguese, addressing named entity recognition (NER). This second edition also included two new tracks: the recognition and normalization of temporal entities (proposed by a group of participants, and hence not covered on this paper) and ReRelEM, the detection of semantic relations between named entities. ...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملPort4NooJ v3.0: Integrated Linguistic Resources for Portuguese NLP
This paper introduces Port4NooJ v3.0, the latest version of the Portuguese module for NooJ, highlights its main features, and details its three main new components: (i) a lexicon-grammar based dictionary of 5,177 human intransitive adjectives, and a set of local grammars that use the distributional properties of those adjectives for paraphrasing (ii) a polarity dictionary with 9,031 entries for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006